Volumetric proton spectroscopic imaging of mild traumatic brain injury.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Poor clinical outcomes without notable neuroimaging findings after mild traumatic brain injury (MTBI) suggest diffuse tissue damage and altered metabolism not observable with conventional MR imaging and CT. In this study, MTBI-associated metabolic changes were assessed over the entire brain by using volumetric proton MR spectroscopic imaging (MRSI) and the findings related to injury and outcome assessments. METHODS Fourteen subjects with mild closed head injury (Glasgow Coma Scale [GCS] scores of 13-15) underwent structural MR imaging and proton MRSI at 1.5 T within 1 month of injury. Distributions of N-acetylaspartate (NAA), total creatine (Cr), and total choline (Cho) were mapped over a wide region of the brain, and metabolite ratios were calculated for 25 regions without MR imaging abnormalities. Results were compared with data from 13 control subjects. RESULTS Significant changes (P <.05) were found for some, but not all, brain regions for the average values from all MTBI subjects, with reduced NAA/Cr, increased Cho/Cr, and reduced NAA/Cho. Global NAA/Cho obtained from the sum of all sampled regions in two subjects was significantly reduced. Metabolite ratios were not significantly correlated with GCS score at admission or Glasgow Outcome Scale (GOS) score at 6 months after injury, although they were weakly correlated with GOS score at discharge. CONCLUSION These results show evidence of widespread metabolic changes following MTBI in regions that appear normal on diagnostic MR images. Although the association with injury assessment and outcome is weak, this preliminary study demonstrates the applicability of volumetric proton MRSI for evaluating diffuse injury associated with MTBI.
منابع مشابه
Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study.
Single-voxel proton magnetic resonance imaging ((1)H-MRS) and proton MR spectroscopic imaging ((1)H-MRSI) were used to compare brain metabolite levels in semi-acute mild traumatic brain injury (mTBI) patients (n = 10) and matched healthy controls (n = 9). The (1)H-MRS voxel was positioned in the splenium, a region known to be susceptible to axonal injury in TBI, and a single (1)H-MRSI slice was...
متن کاملIdentification of Imaging and Clinical Markers Predicting Chronic Sleep Disturbances After Traumatic Brain Injury in Adults
Background and Aim: We aimed to determine the prognostic imaging and clinical markers of chronic Post-Traumatic Sleep-Wake Disorders (PTSWDs) with a special focus on the early cognitive and executive dysfunctions following Traumatic Brain Injury (TBI). The prevalence rate of Post-Traumatic Psychiatric Disorders (PTPDs) in various sleep disorders was also investigated. Methods and Materials/Pat...
متن کاملAdvanced neuroimaging of mild traumatic brain injury.
This article focuses on advancements in neuroimaging techniques, compares the advantages of each of the modalities in the evaluation of mild traumatic brain injury, and discusses their contribution to our understanding of the pathophysiology as it relates to prognosis. Advanced neuroimaging techniques discussed include anatomic/structural imaging techniques, such as diffusion tensor imaging and...
متن کاملEffect of Mild Brain Traumatic Injury on Intelligence and memory Function in Motorcycle Riders
Introduction: The most common causes of traumatic brain injury are vehicle crashes, including motorcycles, which lead to long-term disabilities. The purpose of this study was to investigate the effect of mild brain trauma on intelligence and memory function in motorcycle riders suffering from mild tumor injury. Materials & Methods: In this prospective cohort study, intelligence and memory fu...
متن کاملProton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury.
There are no established biomarkers for mild traumatic brain injury (mTBI), in part because post-concussive symptoms (PCS) are subjective and conventional imaging is typically unremarkable. To test whether diffuse axonal abnormalities quantified with three-dimensional (3D) proton magnetic resonance spectroscopic imaging (¹H-MRSI) correlated with patients' PCS, we retrospectively studied 26 mTBI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2004